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We use a quenching scheme to study the dynamics of a one-dimensional anisotropic XY spin-1/2 chain in the
presence of a transverse field which alternates between the values h+� and h−� from site to site. In this
quenching scheme, the parameter denoting the anisotropy of interaction ��� is linearly quenched from −� to
+� as �= t /�, keeping the total strength of interaction J fixed. The system traverses through a gapless phase
when � is quenched along the critical surface h2=�2+J2 in the parameter space spanned by h, �, and �. By
mapping to an equivalent two-level Landau-Zener problem, we show that the defect density in the final state
scales as 1 /�1/3, a behavior that has not been observed in previous studies of quenching through a gapless
phase. We also generalize the model incorporating additional alternations in the anisotropy or in the strength of
the interaction and derive an identical result under a similar quenching. Based on the above results, we propose
a general scaling of the defect density with the quenching rate � for quenching along a gapless critical line.
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I. INTRODUCTION

The dynamics of a quantum system swept across a quan-
tum critical point at a uniform rate has been studied exten-
sively in recent years. Since a quantum phase transition1,2 is
necessarily accompanied by a diverging correlation length as
well as a diverging relaxation time, the dynamics of the sys-
tem cannot be adiabatic for the entire period of the evolution
however slow the variation in the parameter may be. �The
relaxation time of a quantum system is given by the inverse
of the energy gap which goes to zero at the quantum critical
point�. Assuming that the system was initially prepared in its
ground state, the nonadiabaticity near a quantum critical
point prevents the system from following its instantaneous
ground state resulting in the production of defects in the final
state.

The Kibble-Zurek �KZ� argument3 asserts that the nona-
diabatic effect becomes prominent only close to the critical
point when the rate of change of the Hamiltonian is of the
order of the relaxation time of the underlying quantum sys-
tem. When a parameter of the quantum Hamiltonian is varied
as t /�, where � is the characteristic time scale of the quench-
ing, the above argument predicts a density of defects in the
final state that scales as 1 /�d�/�z�+1� in the limit of �→�.
Here � and z denote the correlation length and dynamical
exponents, respectively, characterizing the associated quan-
tum phase transition of the d-dimensional quantum system.
The KZ prediction has been verified for various exactly solv-
able spin models when quenched across a critical4,5 or a
multicritical6 point at a uniform linear rate. The above stud-
ies have been generalized to explore the defect production in
a nonlinear quench across a quantum critical point where a
parameter in the Hamiltonian is varied as �t /��� with ��0.7

Recent experimental studies on the dynamics of quantum
systems,8 especially quantum magnets,9 ultracold atoms
trapped in optical lattices,10 and spin-one Bose-Einstein
condensates,11 have paved the way for a plethora of related
theoretical studies.4–7,12–17

Another interesting scenario emerges when a low-

dimensional quantum system is quenched through a gapless
phase or an extended quantum critical region.18–20 It has
been established that when a d-dimensional system is
quenched along a �d−m�-dimensional critical surface, the
scaling of the defect density with � is modified to a general-
ized KZ form given by 1 /�m�/�z�+1�.19

In the present work, we explore the dynamics of a one-
dimensional anisotropic XY spin-1/2 chain in the presence of
a transverse field which alternates between h+� and h−�
from site to site. We employ a quenching scheme in which
the parameter determining the anisotropy of interaction is
quenched as t /�, keeping the strength of interaction fixed, in
such a way that the system is driven along a gapless line on
a critical surface in the parameter space. We show that the
density of defects scales as 1 /�1/3, a result that cannot be
explained by the previous studies on the quenching through a
gapless phase. We also propose a general scaling relation for
such a quenching dynamics along a gapless line.

The paper is organized as follows. Our model, the
quenching scheme, and the results obtained for the genera-
tion of defects are presented in Sec. II. At the end of that
section, we propose a general scaling relation for the defect
density when a system is quenched along a gapless line. We
end with some concluding remarks in Sec. III.

II. QUENCHING DYNAMICS AND THE RESULT

The Hamiltonian of the spin-1/2 anisotropic XY model
with an alternating transverse field is given by21,22

H = −
1

2��j

�Jx + Jy��� j
x� j+1

x + � j
y� j+1

y �

+ �Jx − Jy��� j
x� j+1

x − � j
y� j+1

y � + �h − ��− 1� j��� j
z	
 ,

�1�

where �’s denote the Pauli-spin operators satisfying the stan-
dard commutation relations. The strength of the transverse
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field coupled to the operator �z alternates between h+� and
h−� on the odd and even sites, respectively. We have chosen
all the interactions and the fields to be nonrandom. Hence-
forth, we shall refer to Jx+Jy =J as the strength and �=Jx
−Jy as the anisotropy of the nearest-neighbor interaction.

To map the spin operators to spinless fermion operators
using the Jordan-Wigner transformation,23,24 we note that the
presence of two underlying sublattices necessitates the intro-
duction of a pair of fermion operators a and b �Refs. 21 and
22� for even and odd sites as defined below:

�2j
+ = b2j

† exp�i	�
l=1

j−1

b2l
† b2l + i	�

l=1

j

a2l−1
† a2l−1
 ,

�2j+1
+ = a2j+1

† exp�i	�
l=1

j

b2l
† b2l + i	�

l=0

j−1

a2l+1
† a2l+1
 . �2�

Using a restricted zone scheme �where the wave vector k
ranges from −	 /2 to 	 /2� in the Fourier space, the Hamil-
tonian can be written as

H = �
k

Hk = �
k

Âk
†ĤkÂk,

where Âk is the column �ak
† ,a−k ,bk

† ,b−k�. The 4
4 Hermitian
matrix Hk is given by

�
h + J cos k i� sin k 0 − �

− i� sin k − h − J cos k � 0

0 � J cos k − h i� sin k

− � 0 − i� sin k − J cos k + h
� .

�3�

The excitation spectrum of the Hamiltonian H is now ob-
tained by diagonalizing the reduced Hamiltonian matrix Hk
and is given by

�k
� = �h2 + �2 + J2 cos2 k

+ �2 sin2 k � 2h2�2 + h2J2 cos2 k + �2�2 sin2 k�1/2.

�4�

Denoting the four eigenvalues by ��k
�, we can write the

spectrum of the Hamiltonian in the form

H = �
−	/2k	/2

�
�=+,−

�k
���k,�

† �k,� −
1

2
� , �5�

where �k,�
† is the quasiparticle creation operator correspond-

ing to the mode �k ,��. In the ground state the levels −�k
+ and

−�k
− are filled. At the quantum critical point, �k

− vanishes at
an ordering wave vector and the critical exponents are ob-
tained by studying the behavior of �k

− in the vicinity of the
critical point.

The minimum-energy gap in the excitation spectrum oc-
curs at k=0 and k=	 /2. The corresponding phase bound-
aries given by h2=�2+J2 and �2=h2+�2 signal quantum
phase transitions from a paramagnetic to a ferromagnetic
phase and a dimer to ferromagnetic phase, respectively �see
Fig. 1�. Let us define a new set of Pauli matrices � as

�i
x = �− 1�i�i

x, �i
y = �i

y, and �i
z = �− 1�i�i

z

so that the commutation relations of the Pauli matrices are
preserved. It is interesting to note that under this unitary
transformation, we arrive at a set of duality relations given
by h→−�, �→−h, J→−�, and �→−J; this signifies that the
ferro-para transition and the ferro-dimer transition at h2=�2

+J2 and �2=h2+�2, respectively, are essentially identical,
both belonging to the quantum Ising universality class25 with
�=z=1. The phase boundary given by h2=�2+J2 with � ar-
bitrary and J held fixed defines a critical surface in the pa-
rameter space spanned by h, �, and �. Similarly, the phase
boundary �2=h2+�2 with arbitrary J once again defines an-
other critical surface when � is held fixed. For �=0, a gap-
less phase exists with an ordering wave vector cos k
=h2−�2 /J for �2h2�2+J2. The system undergoes a
quantum phase transition from a gapless phase to a gapped
phase when �h� is increased beyond the critical value given
by hc=�2+J2.

The special case with �=0 refers to the well studied an-
isotropic XY spin-1/2 chain in a transverse field.25 In this
model, there exists an Ising transition line at h= �J from the
ferromagnetically ordered phase to a quantum paramagnetic
phase. On the other hand, the vanishing of the gap at �=0
signifies another quantum phase transition belonging to a
different universality class between two ferromagnetically
ordered phases.

It can be established using a numerical diagonalization of
the time-dependent Schrödinger equation involving the re-
duced Hamiltonian matrix that when the transverse field h or
the alternating term � is quenched as t /� from −� to �, so
that the system crosses the quantum critical lines as shown in
Fig. 1, the density of defects n in the final state satisfies the

2
= h

2
+ γ 2δ

h
2

= δ 2
+ J

2

transverse field h
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dimer
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FIG. 1. Phase diagram of the XY chain in an alternating trans-
verse field. We have chosen J=1 and the critical lines are drawn in
the �=0.5 plane. Two special points �h= �J , �=0� and �h=0, �
= ��� are shown on the phase boundaries. The spin chain under-
goes a quantum phase transition with �=2 and z=1 when these
points are approached along the dashed line. On the other hand, the
dotted line shows the direction of the quenching of the transverse
field. We quench the system along a gapless line parallel to the �
axis �perpendicular to the plane of the paper� passing through the
phase boundary h2=�2+J2.
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Kibble-Zurek prediction.22 Our interest, however, lies in the
generation of defects when the system is quenched along a
gapless line. To achieve such a quenching, we vary the an-
isotropy parameter � linearly as �= t /� from −� to �, keep-
ing h, �, and J fixed in such a way that the system always
lies on the phase boundary h2=�2+J2. In the limit t→−�, �
is large and negative and hence in the ground state, the ex-
pectation value �� j

x� j+1
x −� j

y� j+1
y �=−1. On the other hand, for

an adiabatic evolution during the entire period of dynamics,
this expectation value should be +1 in the final state. One can
choose different critical lines for � quenching by choosing
different values of h and � on the critical surface.

The eigenvalue �k
− given by Eq. �4� can be written as

�k
− = ��h − �2 + J2 cos2 k�2 + 2h�2 + J2 cos2 k + �2 sin2 k

− 2h2�2 + h2J2 cos2 k + �2�2 sin2 k�1/2. �6�

On the gapless line h2=�2+J2, the dispersion of the low-
energy excitations at k→0 can be approximated as

�k
− = J4k4

4��2 + J2�
+

�2J2k2

�2 + J2 . �7�

A close inspection of the above excitation spectrum sug-
gests that when � is quenched along the gapless line, Eq. �7�
can be mapped to the spectrum of a 2
2 Landau-Zener �LZ�
Hamiltonian26,27 with two linearly approaching time-
dependent levels. To show this explicitly, we note that in the
limit of very slow quenching, �→�, defects are produced by
sets of modes between which the energy gap is very small.
For the Hamiltonian in Eq. �3�, this occurs in the region of
k=0 if we take h2=�2+J2. Let us first set �=0 and k=0. We
then see that there are two modes, called �I� and �II�, whose
energies are zero; the other two modes have energies which
are both far from zero and far from each other and can there-
fore be ignored in a slow quenching calculation. The zero
energy modes are given by

�I� =
1

�2 + �h + J�2�
�

0

0

h + J
� ,

�II� =
1

�2 + �h + J�2�
0

�

h + J

0
� . �8�

We now deviate slightly from k=0, still keeping �=0 in Eq.
�3�. Doing degenerate perturbation theory to first order in
Jk2, we find that the modes �I� and �II� remain eigenstates of
the Hamiltonian, but their energies are now given by

E� = �
J2k2

2�2 + J2
, �9�

where we have used the relation h2=�2+J2. Finally, we in-
troduce the terms involving � in Eq. �3�. To first order in �,

we find that the Hamiltonian in the basis of �I� and �II� is
given by

hk =
1

�2 + J2�J2k2/2 − i�Jk

i�Jk − J2k2/2 � . �10�

If we now perform a unitary transformation and vary � in
time, we see that the Hamiltonian is of the LZ form

hk = � �̃�t�k J̃2k2/2

J̃2k2/2 − �̃�t�k

 , �11�

where �̃ and J̃ are renormalized parameters given by �̃

=�J /�2+J2 and J̃2=J2 /�2+J2. The diagonal terms in Eq.
�11� describe two time-dependent levels approaching each
other linearly in time �since �= t /��, while the minimum gap

is given by the off-diagonal term J̃2k2 /2. The probability of
excitations pk from the ground state to the excited state for
the kth mode is given by the Landau-Zener transition
formula26,27

pk = exp�−
2	J̃4k4

8k
d�̃�t�

dt
� = exp�−

	J3k3�

4�2 + J2
 . �12�

Note that for large �, pk is dominated by values of k close to
0. The density of excitations n in the final state and in the
large � limit is obtained by integrating over all modes in Eq.
�12�,

n =
2

	
�

0

	/2

dk pk �
1

�1/3 . �13�

The numerical integration of Eq. �13� for �=J=1 is shown in
Fig. 2�a�; although we have used the expression given in Eq.
�12� for all values of k, the dominant contribution to n comes
from the region near k=0 where Eq. �12� can be trusted. We
see that when quenched along a gapless line, the density of
defects in the final state exhibits a slower decay with � as
compared to the 1 /� which is observed in the case when the
gapless line is crossed by varying h.22 Our study also reveals
that although the spectrum of this system involves four lev-
els, the quenching dynamics along the gapless line is essen-
tially a two-level problem which can be studied using an
effective Landau-Zener theory with parameters renormalized
by �.

The case �=0 corresponds to quenching the system along
the Ising critical line of the transverse XY model, and one
obtains an identical scaling of the defect density. Figure 2�b�
shows the 1/3 power-law obtained by numerically solving
the Schrödinger equation for the anisotropic transverse XY
model when the anisotropy parameter � is quenched along
the gapless line h=−J=1. �The Hamiltonian in Eq. �3� has a
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2
2 block-diagonal form if �=0.� One can also propose
an alternative quenching scheme where the strength J is
quenched from −� to �, keeping h, �, and � constant with
�2=h2+�2. The duality relation discussed above leads to the
conclusion that this quenching scheme is equivalent to the
previous one with �= t /� and it yields a similar 1 /�1/3

behavior.
The XY chain with an alternating transverse field can be

further generalized by incorporating additional alternations
in the strength or in the anisotropy of the interaction with the
period of alternation being two. We denote the alternation in
the strength and the anisotropy by Js and �s, respectively, and
for simplicity choose Js=0. Using a similar Jordan-Wigner
transformation �Eq. �2�� followed by a Fourier transforma-
tion, we find an excitation spectrum of the form

�k
� = �h2 + �2 + �J2 + �s

2�cos2 k + �2 sin2 k

− 2�h2 + �s
2 cos2 k���2 + J2 cos2 k� + �2�2 sin2 k�1/2,

�14�

where the eigenvalue �k
− has to be analyzed to explore the

quenching dynamics. Equation �14� shows that the role of
the alternation �s is to renormalize the strength J; conse-
quently, the phase boundary separating the paramagnetic and
the ferromagnetic phases gets shifted to h2=�2+J2−�s

2, with

arbitrary �, at which the gapless excitations occur at k=0.
Quenching � as t /� along the new phase boundary h2=�2

+J2−�s
2 with fixed values of J, h, and �s once again takes the

system along a gapless line on a critical surface.
The dynamics can be reduced to a two-level problem as

before, and the low-energy excitations above the gapless line
are given by

�k
− =�J2 − �s

2�2k4

4��2 + J2�
+

�2J2k2

�2 + J2 . �15�

The defect density n in the final state decreases with � as
1 /�1/3 as can be derived from the Landau-Zener formula in
an identical fashion. Similarly, one may set �s=0 and Js
�0 and consider an equivalent quenching scheme resulting
in an identical scaling of the defect density.

The behavior of the defect density when quenched along a
gapless line suggests the following general scaling relation
of the defect density for a d-dimensional quantum system.
Let the excitations on the gapless quantum critical line be of
the form �k� ���k��z, where z is the dynamical exponent and
the parameter �= t /� is quenched from −� to �. Using a
perturbative method involving the Fermi golden rule along
with the fact that the system is initially prepared in the
ground state, the defect density can be approximated as18

n �� ddk

�2	�d��
−�

�

d� �k��
�

��
�0�ei�����k�����d���2

. �16�

Assuming a general scaling form of the instantaneous exci-
tation ��k�����=kaf� �kz

ka �, where k= �k�� and ka denotes the
higher order term in the excitation spectrum on the gapless
line. Defining a new variable �=�kz−a, we obtain the scaling
behavior of the defect density as

n � 1/�d/�2a−z�. �17�

The case d=1, a=2, and z=1 has been discussed in the
present work. Note that the correlation length exponent �
does not appear in the expression in Eq. �17� because our
quench dynamics always keeps the system on a critical line.

III. CONCLUSION

In conclusion, we have studied the defect density pro-
duced in the final state when a generalized spin-1/2 XY chain
with an alternating transverse field as well as an alternating
nearest-neighbor interaction is quenched along the Ising
critical line by varying the anisotropy parameter �. We show
that the nonadiabatic transition probability and hence the de-
fect density can be estimated using an equivalent Landau-
Zener problem in which the parameters are renormalized by
the alternating parameters � and �s �or Js�. We find that the
defect density decays with the characteristic time scale of
quenching given by 1 /�1/3. The defect scaling exponent ob-
tained here does not fit the KZ scaling 1 /�d�/�z�+1�. In the
present quenching scheme, the system is always on a critical

logτ
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FIG. 2. �a� shows the variation of defect density n with � for
�=J=1 obtained by numerically integrating Eq. �13�, using pk

given in Eq. �12�. �b� shows n obtained by direct numerical integra-
tion of the Schrödinger equation with �=0. In both figures, the
fitted data show a slope of −1 /3 confirming the n�1 /�1/3 behavior.
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surface and therefore the critical exponent � does not appear
in the scaling of the defect density. The quenching scheme
used here is different from the other quenching schemes
through a gapless phase18–20 where the system starts from a
noncritical �gapped� point, goes through a critical �gapless�
point or critical surface, and eventually ends again at a non-
critical point.
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